
Compiler
Lec 05

1

Book
Compilers: Principles, Techniques,
and Tools is a computer science
textbook by Alfred V. Aho, Monica
S. Lam, Ravi Sethi, and Jeffrey D.
Ullman about compiler
construction.

2

PowerPoint
http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14779

3

Syntax Analysis
PART I I

4

Elimination of Left Recursion
A grammar is left recursive if it has a nonterminal A such

that there is a derivation A → A𝛼 for some string 𝛼.

Top-down parsing methods cannot handle left-recursive
grammars, so a transformation is needed to eliminate left
recursion

Direct left recursion

A → A𝛼

5

Elimination of Left Recursion
(cont.)
Direct left recursion

A → A𝛼|𝛽

Could be replaced by the non-left-recursive productions:

A → 𝛽𝐴′

𝐴′ → 𝛼𝐴′|𝜀

6

Example

7

Elimination of Left Recursion
(cont.)
Direct left recursion “general case”

A → A𝛼1|A𝛼2|...|A𝛼𝑚|𝛽1|𝛽2| … |𝛽𝑛

Could be replaced by the non-left-recursive productions:

A → 𝛽1𝐴
′|𝛽2𝐴

′|…|𝛽𝑛𝐴
′

𝐴′ → 𝛼1𝐴
′|𝛼2𝐴

′|...|𝛼𝑚𝐴
′|𝜀

8

Example
S R a | A a | a

R a b

A A R | A T | b

T T b | a

9

Elimination of Left Recursion
(cont.)

S → Aa| b

A → Ac|Sd I 𝜀

Indirect left recursion :

S ⟹ Aa ⟹ Sda

10

Elimination of Left Recursion
(cont.)

11

Example
S → Aa| b

A → Ac|Sd I 𝜀

S → Aa| b

A → Ac| Aad | bd | 𝜀

S → Aa| b

A → bdA’ | A’

A’ → cA’| adA’ |𝜀

12

Example
A1 A2 A3

A2 A3 A1 | b

A3 A1 A1 | a

A1 A2 A3

A2 A3 A1 | b

A3 A3 A1 A3 A1 | b A3 A1 | a

A1 A2 A3

A2 A3 A1 | b

A3 aK | b A3 A1K

k A1 A3 A1 | A1 A3 A1K | 𝜀

13

Example
C -> A | B | f

A -> Cd

B -> Ce

C -> A | B | f

A -> BdA' | fdA‘

A'-> dA' | 𝜀

B -> fdA'eB' | feB‘

B'-> dA'eB' | eB' | 𝜀

A -> Cd

B -> Ce

C -> A | B | f

A -> Cd

B -> Ce

C -> fC'

C' -> dC' | eC' | 𝜀

14

Left Factoring
Left factoring is a grammar transformation that is useful for producing a
grammar suitable for predictive, or top-down, parsing.

15

Left Factoring (cont.)

16

Example

17

Top-Down Parsing
Top-down parsing can be viewed as the
problem of constructing a parse tree for the
input string.

Starting from the root and creating the
nodes of the parse tree in preorder.

Top-down parsing can be viewed as finding
a leftmost derivation for an input string.

18

Example
id+id*id

19

Example

20

FIRST and FOLLOW
The construction of both top-down and bottom-
up parsers is aided by two functions, FIRST and
FOLLOW, associated with a grammar G.

During top-down parsing, FIRST and FOLLOW
allow us to choose which production to apply,
based on the next input symbol.

During panic-mode error recovery, sets of tokens
produced by FOLLOW can be used as synchronizing
tokens.

21

FIRST
Define FIRST(𝛼), where a is any string of grammar symbols,
to be the set of terminals that begin strings derived from 𝛼.

If a ⟹∗ 𝜀, then 𝜀 is also in FIRST(𝛼) .

For example, A ⟹∗ c𝛾, so c is in FIRST(A) .

Terminal “c” is in FIRST (A) and “a” is in FOLLOW (A)

22

FIRST

23

FOLLOW
To compute FOLLOW(A) for all non-terminals A, apply the
following rules until nothing can be added to any FOLLOW
set:

1. Place $ in FOLLOW(S) , where S is the start symbol, and $
is the input right endmarker .

2. If there is a production A → 𝛼𝐵𝛽, then everything in
FIRST(𝛽) except 𝜀 is in FOLLOW(B) .

3. If there is a production A → 𝛼𝐵, or a production A →
𝛼𝐵𝛽, where FIRST(𝛽) contains 𝜀, then everything in
FOLLOW(A) is in FOLLOW(B) .

24

Example
S → cAd

A→ ab | a

25

X First(X)

cAd c

ab a

a a

A a

S c

X Follow(X)

S $

A d

Example
E → TE' E' → +TE' | 𝜀

T → FT' T' → *FT' | 𝜀

F → (E) | id

26

X First(X) X First(X)
id {id} T {(, id}

(E) {(} +TE' {+}

F {(, id} E' {+, 𝜀}

FT' {} TE' {(, id}

T' {*, 𝜀} E {(, id}

FT' {(, id}

X Follow(X)

E {$,)}

Example
E → TE'

Match case 3 twice A → 𝛼𝐵 and A → 𝛼𝐵𝛽, where
FIRST(𝛽) contains 𝜀

A → 𝛼𝐵 if A =E and B = E' ⟹ follow(E) ⊂ follow(E')

A → 𝛼𝐵𝛽 if A =E and B = T and 𝛽 = E'

⟹ follow(E) ⊂ follow(T)

27

X Follow(X)

E {$,)}

E' {$,)} follow(E) ⊂ follow(E')

T {$,)} follow(E) ⊂ follow(T)

Example
E → TE'

Also match case 2

A → 𝛼𝐵𝛽, then everything in FIRST(𝛽) except 𝜀 is in
FOLLOW(B).

Where A =E and B = T and 𝛽 = E‘

FIRST(E‘) except 𝜀 is in FOLLOW(T)

28

X Follow(X)

E {$,)}

E' {$,)} follow(E) ⊂ follow(E')

T {$,), +} follow(E) ⊂ follow(T)

Example
E' → +TE'

Case 2 : FIRST(E‘) except 𝜀 is in FOLLOW(T) (not
new)

Case 3: twice
◦ follow(E') ⊂ follow(E') (not new)

◦ follow(E') ⊂ follow(T)

29

X Follow(X)

E {$,)}

E' {$,)} follow(E) ⊂ follow(E')

T {$,), +} follow(E) ⊂ follow(T)
follow(E') ⊂ follow(T)

Example
T → FT'

Case 2 : FIRST(T‘) = {*, 𝜀} except 𝜀 is in FOLLOW(F)

Case 3: twice
◦ follow(T) ⊂ follow(T')

◦ follow(T) ⊂ follow(F)

30

X Follow(X)

E {$,)}

E' {$,)} follow(E) ⊂ follow(E')

T {$,), +} follow(E) ⊂ follow(T)
follow(E') ⊂ follow(T)

T' {$,), +} follow(T) ⊂ follow(T')

F {*,$,), +} follow(T) ⊂ follow(F)

Example
T' → *FT'

Case 2 : FIRST(T‘) = {*, 𝜀} except 𝜀 is in FOLLOW(F)
(not new)

Case 3: twice
◦ follow(T') ⊂ follow(T') (not new)

◦ follow(T') ⊂ follow(F)

31

X Follow(X)

E {$,)}

E' {$,)} follow(E) ⊂ follow(E')

T {$,), +} follow(E) ⊂ follow(T)
follow(E') ⊂ follow(T)

T' {$,), +} follow(T) ⊂ follow(T')

F {$,), +,*} follow(T) ⊂ follow(F)

Example
S -> iEtSS’ | a

S’ -> eS | Ɛ

E -> b

32

X First(X)

iEtSS’ i

a a

eS e

S’ e, Ɛ

S i, a

E b

X Follow(X)

S $,e

S’ $,e

E t

?

33

