Compiler

Lec 05

___]

Book

Compilers: Principles, Techniques,
and Tools is a computer science
textbook by Alfred V. Aho, Monica
S. Lam, Ravi Sethi, and Jeffrey D.
Ullman about compiler
construction.

Compilers

Principles, Techniques, & Tools

(

i Second Edition

ge,
2,
~ Symbax .
“nRirectoy
“elation
%
-

-
RN

£

Alfred V. Aho
Monica S. Lam
Ravi Sethi

Jeffrey D. Ullman

PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14779

Benha University staff SeM@ioms:Ahmed Hassan Ahmed Abu El Atta (
Beakin Daliait You are in:Home/Courses/Compilers Back To Courses &~ o
enha Universt . [o
Ass. Lect. Ahmed Hassan Ahmed Abu El Atta :: Course Details: T
Home Compilers .
At ils add course | edit course
| adi Comp"ers @
- @
Eavel Undergraduate !
Courses l o
Publications Last year taught 2018
Inlinks(Competition) =
Course description Not Uploaded 8
Theses '?
-
Reports .
Course password &
Published books @
Workshops / Conferences [/ .
| Course files 29d fies ok
Supervised PhD)
Supervised MSc Course URLS add URLs
| £
Supervised Projects =
Course assignments add assianments z
Education ’
Course Exams add exams | q
L Kill add exams
T &Model Answers | (\-1{
| eul
Academic Positions i
Administrative Positions

Syntax Analysis

PART Il

___]

Elimination of Left Recursion

A grammar is left recursive if it has a nonterminal A such
that there is a derivation A = Aa for some string .

Top-down parsing methods cannot handle left-recursive
grammars, so a transformation is needed to eliminate left
recursion

Direct left recursion

A - Aa

Elimination of Left Recursion
(cont.)

Direct left recursion

A-Aal|f

Could be replaced by the non-left-recursive productions:
A— [A
A - ald|e

Example

E—-TE
E'—-+TE'
T—-FT

T 5« FT'
Fo(E) | id

Elimination of Left Recursion
(cont.)

Direct left recursion “general case”

A- Aal |AC(2 | |Aam |.31 |IBZ| |:Bn

Could be replaced by the non-left-recursive productions:

A—- A B AT | BrA
A - aA'|aA'|...|a, A | €

Example
S—>Ra | Aa | a
R—>ab
A—>AR|AT | b
T—>Tb]|a

Elimination of Left Recursion
(cont.)

S—Aal b
A— Ac|Sd | e

Indirect left recursion :

S = Aa = Sda

Elimination of Left Recursion

(cont.)
Algorithm 4.19: Eliminating left recursion.

INPUT: Grammar G with no cycles or e-productions.

OUTPUT: An equivalent grammar with no left recursion.

1) arrange the nonterminals in some order A;, Aa, ..., A,.
2) for (eachifrom1lton){
3) for (each j from 1toi —1) {
4) replace each production of the form A; = A;v by the
productions A; = 67y | 2y | --- | dx7y, where
Aj =6y | &y | -+ | O are all current A;-productions
5) j
6) eliminate the immediate left recursion among the A;-productions
7)1}

Example

S—>Aalb
A— Ac|Sdl e
S— Aalb
A— Ac| Aad | bd | €
S—>Aalb
A bdA | A

A" - cA’| adA’ | &

Example

AL — A A;
A,— A;A|lDb
A;—> A Al|a
AL— A A,
A,—> A; AllDb
A;—>A; AJAZA | DAZA | a
A —> A A,
A,—> A; A[|D

A, —aK | bA;AK
K— A AA A ALAK | &

Example

C>A|B]|f A -> Cd

A->Cd B->Ce

B->Ce C>A|B|f
C>A|B]|f

A ->BdA' | fdA’ A -> Cd

A'->dA' | € B ->Ce

B ->fdA'eB' | feB’ C -> fC'

B'->dA'eB' | eB' | ¢ C'->dC' | eC' | ¢

Left Factoring

Left factoring is a grammar transformation that is useful for producing a
grammar suitable for predictive, or top-down, parsing.

stmt — if expr then stmt else stmi
| if expr then stmt

Left Factoring (cont.)

A= aBy | afs
A= ad
A = By | B2

Example

S>iEtS | iEtSeS | a

E—=b
S=1EtSS | a
S'—=eS | e
E—+b

Top-Down Parsing

»Top-down parsing can be viewed as the
problem of constructing a parse tree for the
iInput string.

»Starting from the root and creating the
nodes of the parse tree in preorder.

» Top-down parsing can be viewed as finding
a leftmost derivation for an input string.

Example

id+id*id E - TEF
E' - +TE'| €
T —= FT
T — *xFT | €
Fo—= (FE) | d
E = E = EFE = E E E
lm ;"\ Im /'”\ Im m m
T E' T E Tfﬂi‘:?""r Tf} \E’JI T/ \E'
/\ /) /\ /1 /1N
F T F T

Example

FIRST and FOLLOW

»The construction of both top-down and bottom-
up parsers is aided by two functions, FIRST and
FOLLOW, associated with a grammar G.

»During top-down parsing, FIRST and FOLLOW
allow us to choose which production to apply,
based on the next input symbol.

»During panic-mode error recovery, sets of tokens
produced by FOLLOW can be used as synchronizing
tokens.

FIRST

Define FIRST(«), where a is any string of grammar symbols,
to be the set of terminals that begin strings derived from «a.

If a =" ¢, then g is also in FIRST(«) .

For example, A=" cy, so cisin FIRST(A) .

A
a ﬂ/ L i)

Terminal “c” is in FIRST (A) and “a” is in FOLLOW (A)

FIRST

1. If X is a terminal, then FIRST(X) = {X}.

2. If X is a nonterminal and X — Y;Y5---Y} is a production for some k > 1,
then place a in FIRST(X) if for some i, a is in FIRST(Y;), and € is in all of
FIRST(Y}),... ,FIRST(Yi_;); that is, Y7 ---Y;_; = e If € is in FIRST(Y;)
forall j = 1,2,...,k, then add € to FIRST(X). For example, everything
in FIRST(Y7) is surely in FIRST(X). If ¥7 does not derive ¢ then we add

nothing more to FIRST(X), but if ¥; = ¢ then we add FIRST(Y2), and
S0 O1.

3. If X — €is a production, then add € to FIRST(X).

FOLLOW

To compute FOLLOW(A) for all non-terminals A, apply the

following rules until nothing can be added to any FOLLOW
set:

1. Place $ in FOLLOW(S) , where S is the start symbol, and $
is the input right endmarker .

2. If there is a production A = aB[5, then everything in
FIRST(() except € isin FOLLOW(B) .

3. If there is a production A = aB, or a production A =
aB[, where FIRST(f) contains &, then everything in
FOLLOW(A) is in FOLLOW(B) .

Example

S - cAd
A—ab | a
X | First(X) X | Follow(X)
cAd C S $
ab a A d
a a
A a
S C

Example

E - TE' E'—> +TE' | €
T = FT T = *FT' | ¢
F - (E)
id {id} T {(, id}
TS TR e X |Follow(X)
; (i E (+ &) e {$)}
FT! {) TE' {(,id)
T * &) E {(, id}
T {(,id)

Example
E - TE'

Match case 3 twice A = aB and A = aB[5, where
FIRST(S) contains &

A— aB if A=EandB=E'" = follow(E) c follow(E')
A—- aBfifA=EandB=Tand =F'

= follow(E) c follow(T) IS

E {$)}
E' {$,)} follow(E) < follow(E')
T {$)} follow(E) < follow(T)

Example

E —> TE'

Also match case 2

A = aB[, then everything in FIRST(fS) except € isin
FOLLOW(B).

Where A=Eand B=Tand f = E

FIRST(E‘) except € is in FOLLOW(T)

E {$)}
E' {$,)} follow(E) < follow(E')
T {$),+} follow(E) c follow(T)

Example

E' - +TE'
Case 2 : FIRST(E’) except € isin FOLLOW(T) (not
new

Case 3: twice
> follow(E') c follow(E') (not new)

followte) < followt) PP

E {$)}
E' {$,)} follow(E) < follow(E')
T {$),+} follow(E) c follow(T)

follow(E') < follow(T)

Example

T - FT'
Case 2 : FIRST(T) = {*, €} except € is in FOLLOW(F)

case 3: twice X Followb)

> follow(T) c follow(T')

{$,)}
> follow(T) c follow(F) g $)1 follow(E) < follow(E')
T {$),+ follow(E) c follow(T)
follow(E') c follow(T)
T {$,), +} follow(T) c follow(T")
{*,$,), +} follow(T) c follow(F)

Example
T' > *FT'

Case 2 : FIRST(T) = {*, €} except € is in FOLLOW(F)
(not new)

Case 3: twice
o follow(T') c follow(T') (not new)

ollow(r) < olow(?) P

E {$)}
E' {$,)} follow(E) c follow(E')
T {$),+} follow(E) c follow(T)

follow(E') c follow(T)
T {$), +} follow(T) c follow(T")

F{$,), +%*} follow(T) c follow(F)

Example

S->iEtSS’ | a
S->eS | €
DU * | First(x)
— T X | Follow(X)
S $.,e
a)
= S $,e
S’ e, € _
S I, a

